I want to see more stuff like grid scale flywheel energy storage. Dead simple tech and if it can live power by even 6 hourait’s immediately useful, 24 and that’s 90% of that you need
Many battery tech are dead simple. It is a rolled layer of specific materials at precise thickness but really not rocket science, especially when you are not concerned about per kg efficiency. Flywheels are much more complicated, requiring well maintained mechanics, a motor and a dynamo.
It takes a 260kg flywheel with all its mass at the edge spinning at mach 0.5 to store 1kWh.
If you want simple supply chains, build a carnot battery. It’ll be half as efficient, but far more compact (if graphite is the storage, more compact than LFP) and long lasting.
If you want a simple machine, buy a battery. The only hard part is high purity.
I want to see more stuff like grid scale flywheel energy storage. Dead simple tech and if it can live power by even 6 hourait’s immediately useful, 24 and that’s 90% of that you need
Many battery tech are dead simple. It is a rolled layer of specific materials at precise thickness but really not rocket science, especially when you are not concerned about per kg efficiency. Flywheels are much more complicated, requiring well maintained mechanics, a motor and a dynamo.
It takes a 260kg flywheel with all its mass at the edge spinning at mach 0.5 to store 1kWh.
If you want simple supply chains, build a carnot battery. It’ll be half as efficient, but far more compact (if graphite is the storage, more compact than LFP) and long lasting.
If you want a simple machine, buy a battery. The only hard part is high purity.
Afaik flywheels are good for smoothing out fluctuations and peaking but not for real storage.
Flow batteries and pumped hydro seem like the solution for durable storage.