Unchecked overuse is draining and damaging aquifers nationwide, a data investigation by the New York Times revealed, threatening millions of people and America’s status as a food superpower.
There is a limit for how much water consumption can be reduced, how much water can be reused and how much preserved untouched.
It is actually a subject I actually find interesting. All the criticism put towards the technology could be as easily applied to the internal combustion engine: its inefficient, produces larges amounts of residues and is expensive to run.
There are several large scale operations already in place (Israel sources its water from the sea, as well as several other nations where drinking water is scarce) and even hotels use it to source water for swimming pools.
There is, of course, the problem of distribution but we’ve already invented pipelines, haven’t we? And a water pipeline bursting could cause floods but no great concern lasting environmental damage, unlike oil or liquified natural gas.
All the criticism put towards the technology could be as easily applied to the internal combustion engine: its inefficient, produces larges amounts of residues and is expensive to run.
This was an attempt at being sarcastic.
If we’re running a technology by all means obsolete (internal combustion engine) and do it overlooking its drawbacks running current technology for dessalination can very well follow the same reasoning.
I read a good deal of criticism towards dessalination regarding the disposal of the brine. That is a fair point but those brines could very well be reprocessed for minerals harvesting including lithium, which has great demand. Even by just harvesting the salt, we’d be getting an important resource.
There is, of course, the problem of distribution but we’ve already invented pipelines, haven’t we?
This is true and we already do it. Fresh water is distributed over huge distances using high pressure and volume. The infrastructure already exists.
And a water pipeline bursting could cause floods but no great concern lasting environmental damage, unlike oil or liquified natural gas.
I’ve lived where this happened once and it was not pretty. A low point of high density residencial area got flooded. Water reached somewhere around 80cm high. Damage to cars and ground stories, water distribution interrupted for 3 days. But no lasting damage.
There is a limit for how much water consumption can be reduced, how much water can be reused and how much preserved untouched.
It is actually a subject I actually find interesting. All the criticism put towards the technology could be as easily applied to the internal combustion engine: its inefficient, produces larges amounts of residues and is expensive to run.
There are several large scale operations already in place (Israel sources its water from the sea, as well as several other nations where drinking water is scarce) and even hotels use it to source water for swimming pools.
There is, of course, the problem of distribution but we’ve already invented pipelines, haven’t we? And a water pipeline bursting could cause floods but no great concern lasting environmental damage, unlike oil or liquified natural gas.
so you agree with me? it’s not simple. it’s not just because “you don’t want to”. desalinization is extremely technically challenging.
This was an attempt at being sarcastic.
If we’re running a technology by all means obsolete (internal combustion engine) and do it overlooking its drawbacks running current technology for dessalination can very well follow the same reasoning.
I read a good deal of criticism towards dessalination regarding the disposal of the brine. That is a fair point but those brines could very well be reprocessed for minerals harvesting including lithium, which has great demand. Even by just harvesting the salt, we’d be getting an important resource.
This is true and we already do it. Fresh water is distributed over huge distances using high pressure and volume. The infrastructure already exists.
I’ve lived where this happened once and it was not pretty. A low point of high density residencial area got flooded. Water reached somewhere around 80cm high. Damage to cars and ground stories, water distribution interrupted for 3 days. But no lasting damage.