• jarfil@beehaw.org
    link
    fedilink
    arrow-up
    7
    ·
    6 months ago

    Not exactly.

    LLMs are predictive-associative token algorithms with a degree of randomness and some self-reflection. A key aspect is that anything can be a token, they can self-feed their own output, creating the basis for a thought cycle, as well as output control input for other algorithms. It remains to be seen whether the core of “(human) intelligence” is much more than that, and by how much.

    Stable Diffusion is a random image generator that refines its output based on perceptual traits associated with a prompt. It’s like a “lite” version of human dreaming, only with a super-human training set. Kind of an “uncanny valley” version of dreaming.

    It just so happens that both algorithms have been showcased at about the same time, and it’s the first time we can build a “set and forget” AI system that can both make decisions about its own next steps, and emulate human creativity… which has driven the hype into overdrive.

    I don’t think we’ll stop hearing about it, but I do think there is much more to be done, and it’s pretty much impossible to feed any of the algorithms with human experience data, without registering at least one human learning cycle, as in over many years from inside a humanoid robot.

    • AVincentInSpace@pawb.social
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      6 months ago

      LLMs are predictive associative token algorithms

      Ah, so they produce parts of words instead of whole words at a time. Totally different.

      with a degree of randomness and self reflection.

      And they’re hooked up to random number generators so if you give it the same input twice you’ll get different output. Totally makes it smarter.

      A key aspect is that anything can be a token

      …much like predictive text. Rarely will you find one that doesn’t suggest punctuation on occasion.

      they can self feed their own output

      …much like predictive text.

      as well as output control input for other algorithms.

      Oh, so you can tell it to suggest certain tokens more or less often. How fancy.

      It remains to be seen whether the core of human intelligence is much more than that.

      I mean, I’d say the ability to visualize things and reason about scenarios it hasn’t experienced before are a good start.

      • jarfil@beehaw.org
        link
        fedilink
        arrow-up
        1
        ·
        6 months ago

        Not sure if you were unable or unwilling to understand anything of what I wrote, and I don’t like your tone. Feel free to come back with something more serious.