First U.S. nuclear reactor built from scratch in decades enters commercial operation in Georgia::ATLANTA — A new reactor at a nuclear power plant in Georgia has entered commercial operation, becoming the first new American reactor built from scratch in decades.
Let’s play around with the thought of powering all of America with renewables. America’s coal, gas, petroleum and nuclear plants generate a combined baseload power of 405 GWavg, or “gigawatts average.” (Remember, a gigawatt is a thousand megawatts.) Let’s replace all of them with a 50 / 50 mix of onshore wind and CSP (solar), and since our energy needs are constantly growing, let’s round up the total to 500 GWs, which is likely what we’ll need by the time we finish. Some folks say that we should level off or reduce our consumption by conserving and using more efficient devices, which is true in principle. But in practice, human nature is such that whatever energy we save, we just gobble up with more gadgets. So we’d better figure on 500 GWs.
To generate this much energy with 1,000 of our 500 MW renewables farms, we’ll put 500 wind farms in the Midwest (and hope the wind patterns don’t change…) and we’ll put 500 CSP farms in the southwest deserts—all of it on free federal land and hooked into the grid. Aside from whatever branch transmission lines we’ll need (which will be chump change), here’s the lowdown:
Powering the U.S. with 500 wind and 500 CSP farms, at 500 MWavg apiece.
35,135 sq. miles (169 mi / side)
(the size of Indiana)
60-year cost ……… $29.25 Trillion
That’s 29 times the 2014 discretionary federal budget.
If we can convince the wind lobby that they’re outclassed by CSP, we could do the entire project for a lot less, and put the whole enchilada in the desert:
Powering the U.S. with 1,000 CSP farms, producing 500 MWavg apiece.
24,234 sq. miles (105.8 mi / side)
(the size of West Virginia)
60-year cost ……. $18.45 Trillion
#That’s to 18 times the 2014 federal budget.
Or, we could power the U.S. with 500 AP-1000 reactors.
Rated at 1,117 MWp, and with a reactor’s typical uptime of 90%, an AP-1000 will deliver 1,005 MWav. Five hundred APs will produce 502.5 GWav, replacing all existing U.S. electrical power plants, including our aging fleet of reactors.
The AP-1000 uses 5,800 tonnes of steel, 90,000 tonnes of concrete, with a combined carbon karma of 115,000 t of CO2 that can be paid down in less than 5 days. The entire plant requires 0.04km2, a patch of land just 200 meters on a side, next to an ample body of water for cooling. (Remember, it’s a Gen-3+ reactor. Most Gen-4 reactors won’t need external cooling.) Here’s the digits:
1.95 sq. miles (1.39 miles / side)
(1.5 times the size of Central Park)
60-year cost ……… $2.94 Trillion
#That’s 2.9 times the 2014 federal budget.
Small Modular Reactors may cost a quarter or half again as much, but the buy-in is significantly less, the build-out is much faster (picture jetliners rolling off the assembly line), the resources and CO2 are just as minuscule, and they can be more widely distributed, ensuring the resiliency of the grid with multiple nodes.
And this is without even mentioning MSRs.
Why are your only considerations concentrated solar farms and wind farms? What about hydro power, geothermal, and scattered solar installations?
Why do your numbers assume we would be building everything at once nationwide?
Why don’t you include the costs of building and running the equivalent coal plants?
It seems your comment boils down to “if we limit ourselves to implementing the most expensive options for renewables and do it on an accelerated timeframe, it’s going to cost more than if we didn’t do anything.” Not a very helpful analysis.
If you take a look at the comment that I was replying to, you will have your answer for the first question.
Because it was the scenario I chose. You are more than welcome to submit your own analysis with your own scenario and eventual limitations etc.
I didn’t include coal plants because we weren’t talking about coal plants. You are more than welcome to submit your own rundown including coal plants.
Solar is not one of the “most expensive” forms of renewable.
If you didn’t find the analysis helpful, you are once again, more than welcome to submit your own. The analysis is very helpful in the context of the comment I replied too.
So I should just ignore the first paragraph of your comment, where you introduce your own context for the rest of the comment and mention replacing coal, oil, and nuclear plants?
The person you replied to suggested a solar panel array. You stated you wanted to “play around with the thought of powering all of America with renewables” but then excluded all forms of renewables from your analysis except for two very specific options.
Who said it was? I said you chose the most expensive way of implementing it with concentrated solar power, a giant array of mirrors that focus light into a central tower. What about regular solar panel installations that don’t require a gigantic central facility hundreds of miles from population centers?
Your analysis reads like pure misinformation intent on leading people to believe our only two choices are to stick with coal, oil, and nuclear or pay multiples of our nation’s GDP and use several years worth of resources like steel in order to go the “renewable” route.
It’d be like me “playing around with the thought of powering all of America with renewables” and suggesting our only course of action with renewables is putting a giant dome over Hawaii to harness geothermal power from the active volcanoes and then running 10ft thick cables 9,000 miles across the Pacific in order to feed the mainland at a cost of 200 trillion dollars and a 100 year supply of copper. It’s an absurd and misleading proposal.
Now I am actually honestly not sure if you are actually being serious or if you are trying to troll.
“It’d be like me “playing around with the thought of powering all of America with renewables” and suggesting our only course of action with renewables is putting a giant dome over Hawaii to harness geothermal power from the active volcanoes and then running multiple 10ft thick cables 2,500 miles across the Pacific in order to feed the mainland at a cost of 200 trillion dollars and a 100 year supply of copper. It’s an absurd and misleading proposal.”
Have you been smoking crack perhaps?
Yes I could have clarified that I was discussing solar but I thought the context of the conversation was enough. But sure, “renewables” was bad formulation on my part.
Uh.
The nuke plant is expensive. Renewables aren’t. And your argument ist essentially “but based on made up numbers that illustrate how inexpensive nuke plants could be, nuke plants could be much less expensive! Duh!”
Yeah, no. Build renewables.
I’m not quite why the argument is “nuclear or renewables.” It should be nuclear AND renewables.
Renewable energy generators have improved significantly in the last two decades. I’m sure they will continue to improve.
Nuclear power is a hell of a lot cleaner than coal. And it seems nuclear power plants have improved tremendously. We should use them.
This right here, we could more easily transition to nuclear from coal/oil while building up the infrastructure and scale needed for renewables. In time we can phase out nuclear but at least we could have a stop gap fix in the meantime.
I take it you didn’t even bother to read my comment. So why answer it?
Solar doesn’t perform at its nameplate capacity, so you have to overbuild the capacity by about 200% in order to achieve the same baseload as a constant output thermal plant.
And that doesn’t even touch on the fact that solar doesn’t work at night, and the capacity is much lower during the different seasons in Northern latitudes.
So you either build a shitton of batteries, provide backup power sources, or tell people not to use energy during the winter. According to Tesla, they sell their Megapack batteries for around $1/watt-hour of storage. Still, lets figure a 1 Ghwr battery for every 1 GW of installed capacity of solar. That should give the system a few hours of runtime after it gets dark.
So instead of your 500 GW solar capacity, we need 1,000 GW. And 1,000 Gwhr of batteries. $68.50 Trillion worth of solar + $1 Trillion for batteries.
However, I’m a little skeptical on your solar costs. Utility scale solar is typically cited as between $1-$2/watt installed. So for 1,000 GW that gives you $1 Trillion installed. Which is a lot of money, but less than Biden’s student load forgiveness plan.
I personally believe, after spending 3 years listening to the Energy Gang podcast, that decarbonizing the energy system is an ‘all-hands on deck’ emergency that will require every trick in the book to tackle. We will likely max out every type of cheap and readily financeable energy system on this road.
Based and clean energy pilled.
The fact that you are even considering CSP shows you know nothing about the current state of renewables. What’s more likely is you’re parroting or copy-pasting some bullshit talking points from a right wing think tank. Nukes have ALWAYS gotten more expensive. I’m waiting for any production plant SMR, MSR whatever to buck this trend but it hasn’t happened.